Analytical development and optimization of a graphene–solution interface capacitance model

نویسندگان

  • Hediyeh Karimi
  • Rasoul Rahmani
  • Reza Mashayekhi
  • Leyla Ranjbari
  • Amir H Shirdel
  • Niloofar Haghighian
  • Parisa Movahedi
  • Moein Hadiyan
  • Razali Ismail
چکیده

Graphene, which as a new carbon material shows great potential for a range of applications because of its exceptional electronic and mechanical properties, becomes a matter of attention in these years. The use of graphene in nanoscale devices plays an important role in achieving more accurate and faster devices. Although there are lots of experimental studies in this area, there is a lack of analytical models. Quantum capacitance as one of the important properties of field effect transistors (FETs) is in our focus. The quantum capacitance of electrolyte-gated transistors (EGFETs) along with a relevant equivalent circuit is suggested in terms of Fermi velocity, carrier density, and fundamental physical quantities. The analytical model is compared with the experimental data and the mean absolute percentage error (MAPE) is calculated to be 11.82. In order to decrease the error, a new function of E composed of α and β parameters is suggested. In another attempt, the ant colony optimization (ACO) algorithm is implemented for optimization and development of an analytical model to obtain a more accurate capacitance model. To further confirm this viewpoint, based on the given results, the accuracy of the optimized model is more than 97% which is in an acceptable range of accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal oxide-graphene field-effect transistor: interface trap density extraction model

A simple to implement model is presented to extract interface trap density of graphene field effect transistors. The presence of interface trap states detrimentally affects the device drain current-gate voltage relationship Ids-Vgs. At the moment, there is no analytical method available to extract the interface trap distribution of metal-oxide-graphene field effect transistor (MOGFET) devices. ...

متن کامل

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

Capacitance Properties of Electrochemically Synthesised Polybithiophene-Graphene Exfoliated Composite Films

The graphene (GR) has attracted intensive interest due to its two-dimensional and unique physical properties. In the present study, the graphene sheets were synthesized by electrochemical exfoliation of graphite in sulfuric acid solution. The polybithiophene-graphene (PbTh-GR) composite films deposited onto indium tin oxide substrate (ITO/PbTh-GR) have been prepared by the incorporation of ...

متن کامل

Electrolyte-Gated Graphene Field-Effect Transistors: Modeling

This work presents a model for electrolyte-gated graphene field-effect transistors (EGFETs) that incorporates the effects of the double layer capacitance and the quantum capacitance of graphene. The model is validated through experimental graphene EGFETs, which were fabricated and measured to provide experimental data and extract graphene EGFET parameters such as mobility, minimum carrier conce...

متن کامل

Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage

In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014